WD 40‐ REPEAT 5a represses root meristem growth by suppressing auxin synthesis through changes of nitric oxide accumulation in Arabidopsis
نویسندگان
چکیده
منابع مشابه
Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root merist...
متن کاملTIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis
Roots play important roles in plant survival and productivity as they not only anchor the plants in the soil but are also the primary organ for the uptake of nutrients from the outside. The growth and development of roots depend on the specification and maintenance of the root meristem. Here, we report a previously unknown role of TIME FOR COFFEE (TIC) in controlling root meristem size in Arabi...
متن کاملMelatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan) for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship b...
متن کاملPositional Information by Differential Endocytosis Splits Auxin Response to Drive Arabidopsis Root Meristem Growth
In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive gen...
متن کاملNitric oxide represses the Arabidopsis floral transition.
The correct timing of flowering is essential for plants to maximize reproductive success and is controlled by environmental and endogenous signals. We report that nitric oxide (NO) repressed the floral transition in Arabidopsis thaliana. Plants treated with NO, as well as a mutant overproducing NO (nox1), flowered late, whereas a mutant producing less NO (nos1) flowered early. NO suppressed CON...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Plant Journal
سال: 2018
ISSN: 0960-7412,1365-313X
DOI: 10.1111/tpj.13816